ABSTRACT: This paper will describe suggestions about the design of oil-water separators for airport facilities. Environmental regulation of oil in water discharges is increasingly becoming more stringent and penalties for releases increasing. Airport facilities have a number of possible applications for coalescing plate separators. These applications include fuel farm stormwater, fueling trucks, fueling aprons, and vehicle maintenance operations. In the case of fuel farm stormwater and fueling aprons, the contaminated water must be treated if discharged to surface waters in order to meet the “no sheen” requirement of the Clean Water Act. If the water is to be discharged to a sanitary sewer, this requires permission from the sewer facility authorities. This is because the sewer facilities are required to have permits governing their effluent water to surrounding lakes and rivers.

Little information has been available that addresses specific actions for the handling of contaminated water within the boundaries of such airport facilities. The purpose of this paper is to offer suggestions for specifying and designing separations systems to meet the requirements for treating the contaminated waters. Overall, oil-water separator system designs are discussed and recommendations for ensuring system efficiency, regulatory compliance, reliability, sustainability and effective procedures are presented.

Keywords: Oil-Water Separator, airport wastewater, airport stormwater, airport fuel farm, fueling apron, truck fueling station, vehicle maintenance
TABLE OF CONTENTS

Background and Introduction...3

Laws and Regulations...3-4

Applications for Coalescing Separators at Airport Facilities..........................4-5
 Airport Fuel Farm Stormwater..4-5
 Airport Truck Filling Areas..5
 Airport Fueling Apron..5
 Airport Vehicle Maintenance...5-6

Solids Settling and Oil Rising...6-8
 Settling of Solid Particles...6
 Rising of Oil Droplets..6-8

Systems Available for Removing Oil from Water..8-10
 Gravity Separation..8-9
 Enhanced Gravity Separation..9
 Multiple Angle Plate Separators...9
 Applications of the Different Systems..10

Specifying Coalescing Separators at Airport Facilities....................................10-14
 Fuel Farm Separators..11-12
 Truck Filling Area Separators..12
 Fueling Apron Separators..12
 Vehicle Maintenance Facility Separators...12-14
 Parking Lots...14

General Design Considerations...14-16
 Inlet Flow Conditions..15
 Outlet Flow Conditions..15-16

Summary and Conclusions...16

About the Author...17

References...18
BACKGROUND AND INTRODUCTION

In many airport facilities, process waters (stormwater or wastewater) are contaminated with oil which needs to be removed before returning the water into the process cycle. Most of this contamination comes from jet fuel leaks and spills associated with airport fueling stations, airport storage tanks, and airport vehicle maintenance operations. Hydrocarbons that are present in any effluent water need to be removed in order to protect wetlands, streams, and lakes from possible contamination.

It is necessary to remove the oil from the water before it may be discharged from the airport facility. In some cases, airports will have dedicated wastewater treatment equipment, but most wastewater is directed to the local sanitary sewers. The purpose of the following information is to provide some guidance on the nature and quality of the wastewater to be expected and to offer some design suggestions for the pretreatment of wastewater, prior to discharging the source.

LAWS AND REGULATIONS

Oil in water discharges from industrial and other facilities, including airports, are governed by a variety of federal, state and local laws. Included in these laws are the Clean Water Act (CWA) and its amendments, the Oil Pollution Act of 1990, the Coastal Zone Management Act and others (Findley and Farber, 1992).

The basic law covering discharges is the Clean Water Act. It was originally enacted as the Federal Water Pollution Control Act of 1972, but was extensively amended in 1977. The 1977 amendments, in conjunction with the earlier legislation, became known as the Clean Water Act. Under the terms of this Act, amended Section 402, the National Pollutant Discharge Elimination System (NPDES) permit method was created. Permits for point sources under this system are granted by the Environmental Protection Agency (EPA) or by states with EPA approved programs. After enactment of this law, any discharges other than those covered by the permit are illegal. Although the Clean Water Act was enacted primarily to control discharges from Publicly Owned Treatment Works (POTWs, also known as sanitary sewer treatment plants) and toxic discharges from industrial plants, it also controls the discharges of petroleum and other hydrocarbons into the waters of the United States.

The Clean Water Act directly governs the effluent from all airport facilities if the effluent is not further treated. If the effluent from the facility is further treated downstream, either at a public or private treatment plant, the Clean Water Act governs the effluent from that plant. In circumstances such as this, the management of the treatment plant controls the allowable effluent from the facility (which is entering their treatment plant). It is often possible to check with the engineers at the treatment plant and find out the allowable oil content discharge.
Most POTWs set their inlet criteria substantially above the Clean Water Act requirement because the oil in the effluent from the facility is significantly diluted by mixing with the other inlet water. The criteria for water entering the POTW's tends to range from 75 mg per liter of oil allowable up to about 200 mg per liter allowable, but some plants still have lower allowable oil thresholds.

In the event of direct discharge to lakes or rivers, most states and localities require discharges to contain 15 ppm or less of oil and grease, based on a 24 hour composite sample. Oil and grease may include petroleum hydrocarbons as well as animal and vegetable oils. Some localities have established lower discharge limits. King County, Washington, which includes the Seattle area, requires discharges to be less than 10 ppm (Romano, 1990).

In Canada, local regulations and the Fisheries Act govern discharge of contaminants into any body of water which “either contains or may contain fish” (Government of Canada, 1978).

APPLICATIONS FOR COALESCING SEPARATORS AT AIRPORT FACILITIES

Airport Fuel Farm Stormwater

All airports have storage facilities for jet fuel. These storage tanks are usually contained in a dike or berm in case of a spill or fire. Rainwater that falls within the berm area will eventually become contaminated from leaks in the tanks, from valves or flanges, or from changing the fuel filter cartridges. Small amounts of hydrocarbons will be present in this rainwater.

![Typical Airport Facility Separator](image)

Also, there is always the possibility that a spill may occur from one of the storage tanks and, if this occurs, there will be more or less pure jet fuel to be treated using a separator.
The design engineer should verify if a spill is possible. If a spill is possible, an oil stop valve, located at the outlet of the separator, can be installed to ensure that large quantities of oil do not pass through the separator and out into the environment.

Absorbents are not suitable for use in situations where there is the possibility of a spill because they have very limited capacity and are quickly spent. Maintenance departments seldom replace absorbents as often as necessary, partly because of pressuring other work and partly because of the cost of fresh absorbents and also the cost of disposing of spent absorbent pads or pillows. Coalescing separators do not have these problems because the media is permanent and the recovered oil is generally recyclable.

A technical paper describing the installation and testing of one such separator at Camarillo Airport in Camarillo, California is available. If it is desired, please ask for a copy and MSR will gladly provide the document.

Airport Truck Filling Areas

Sometimes, airports utilize fueling trucks instead of hard piped fueling stations. This alternative source is usually included with a filtration system. When these vehicles are filled, there is also the possibility of some leakage from the piping, some leakage from the truck itself, and the chance of a spill if there are problems with the trucks. As with any spill, precautions should be taken and controlled with an oil-water separator.

Airport Fueling Apron

The fueling apron is another potential place for a separator to be installed. When airplanes are fueled, there are sometimes small leaks and drips of hydraulic oil and, more often, the jet fuel itself. The jet fueling systems are almost always installed with no-drip type fittings, so the drips and leaks are very minimal, but they can still occur. In an airport facility in western Canada, several hundred gallons of oil leaked from the wing tank of a commercial airliner. A separator, designed by Kirby Mohr, had previously been installed and in operation, captured "every drop", according to the airport manager. MSR has experience in this type of design and can offer both equipment and design suggestions for safe and effective treatment of the water from fueling aprons. MSR’s gravity operated, green technology is not only cost-effective, but also requires very little maintenance and is both efficient and sustainable. Like other areas, the *Rational Formula* can be used to estimate flows.

Airport Vehicle Maintenance

Another beneficial application for a separator at an airport is vehicle maintenance. Most airports have vehicle maintenance facilities for ramp vehicles, fire equipment, and other vehicles needed for operation. Many also have rental car maintenance facilities. A
A separator can be added to handle the water from any vehicle maintenance that is done on site and there may also be separators for the airport parking lots. MSR has successfully provided reliable separators at many airports.

SOLIDS SETTLING AND OIL RISING

Separation of oil and water is different from the settling separation of solids. Oil droplets coalesce into larger, spherical droplets, while solids agglomerate into larger masses, but do not coalesce into particles that have lower surface/volume ratios like oil.

Settling of Solid Particles

The settling of solids particles is governed by Stokes’ Law. This function, simply stated, is (Perry, 1963):

\[
V_p = \frac{G}{(18\mu)} \times (d_p - d_c) \times D^2
\]

Where:
- \(V_p\) = droplet settling velocity, cm/sec
- \(G\) = gravitational constant, 980 cm/sec²
- \(\mu\) = absolute viscosity of continuous fluid (water), poise
- \(d_p\) = density of particle (droplet), gm/cm³
- \(d_c\) = density of continuous fluid, gm/cm³
- \(D\) = diameter of particle, cm

Because the equation was developed for solids falling, a particle (or droplet) rise velocity is a negative number. Assumptions Stokes made in this calculation are:

1) Particles are spherical
2) Particles are the same size
3) Flow is laminar, both horizontally and vertically

From the above equation, one can see that the most important variables are the viscosity of the continuous liquid, specific gravity difference between the continuous liquid and the particle, and the particle size. After these are known, the settling velocity and, therefore, the size of separator required may be calculated.

The velocity of settling or rising is dependent on the hydrodynamic drag exerted on the settling particle by the continuous fluid. This drag is dependent on the shape of the particle as well as the viscosity of the continuous fluid. Solid particles present in maintenance systems do not perfectly obey Stokes’ Law because of their particle shape.

Rising of Oil Droplets
The rise rate of oil droplets is also governed by Stokes’ law. If the droplet size, specific gravity, and continuous liquid viscosity are known, the rise rate and, therefore, the required vessel size may be calculated.

To calculate the size of an empty-vessel gravity separator, it is first necessary to calculate the rise velocity of the oil droplets by the use of Stokes’ Law. The size of the separator is then calculated by considering the path of a droplet entering at the bottom of one end of the separator and exiting from the other end. Sufficient volume must be provided in the separator so that the oil droplet entering the separator, at the bottom of the separator, has time to rise to the surface before the water carrying the droplet exits the opposite end of the separator.

Calculation of rise rate by this method is a gross simplification of actual conditions because oil droplets are not all the same size, and they tend to coalesce into larger droplets.

Droplet rise-rates follow Stokes’ law as long as laminar flow conditions prevail. Laminar flow regimes (in the direction of rise) exist with most droplets. The rise rate of larger droplets may exceed the velocity of laminar flow. When the droplets coalesce, they do not form flocs as with solids. Instead, they coalesce to become larger droplets. Interfacial tension (sometimes referred to as surface tension) of the liquid allows for the assumption of spherical shaped droplets since this is the smallest possible shape for a given mass.

According to the API method listed in publication 421, the calculation for the performance of the separators assumes the use of a 45 minute residence time for the removal of the oil. It further assumes the use of Stokes’ law in the droplet size removal calculation. One of the preconditions for Stokes’ law is laminar flow, and this condition is seldom, if ever, met in an API separator because of convection currents and other flow currents that preclude the orderly rising of small droplets. Large droplets rise well, but the small ones do not.

The API separator calculation method was originally designed, in 1947, for the removal of oil from refinery effluent streams for resource recovery, and was not intended for removing oil down to levels required by environmental laws. The API’s own survey notes that most of their members’ separators do not remove oil to less than about 150 mg/L, which does not meet the Clean Water Act.

The oil droplet size is difficult to determine with any accuracy. Particle sizes of solid particles are fairly easy to determine in the laboratory, but oil droplet size information is much more difficult to obtain because most of the methods for determining sizes change the droplet size.

Even if the droplet size is unknown, or a large range of droplet sizes is present (the normal situation), it is still possible to determine the rise rates of the droplets and, thus, the size.
separator required by judicious application of conservative assumptions. This is discussed below.

Oil in the outlet should not be present in quantities great enough to cause oil sheen if the effluent is not directed to a sanitary sewer. In order to minimize the possibility of such discharge, it is wise to proceed carefully and cautiously in the design of oil-water separator systems.

SYSTEMS AVAILABLE FOR REMOVING OIL FROM WATER

Systems for removing oil from water range from very simple tanks to very elaborate membrane technology-based systems. For most applications in removing oil, the simplest systems are inadequate (although often used) and the most complicated are either too expensive or too maintenance-intensive, or a combination of both. Therefore, most of the following information provided will concentrate on methods of separation intended to meet regulatory requirements with minimum cost and maintenance.

Gravity Separation

One of the simplest possible separators is an API separator. In 1947, the American Petroleum Institute (API) commissioned a study by the University of Wisconsin that provided design criteria for an oil-water separator system intended for gross oil recovery at the water outlet of oil refineries. A diagram of a typical API separator is shown in Figure 1 below (Adapted from API Publication 421, 1990).

![Figure 1: API Separator](image)

Systems are often sold as “API type separators”, which commonly means that they have the same universal baffle arrangement as a regular API separator, but do not conform to the design criteria of a 45 minute residence time (established by the API). Separators...
which have a lesser residence time (and are therefore smaller and less expensive than rigorously designed API separators) do not meet the API design criteria and, therefore, cannot be expected to meet the API's modest effluent expectations.

Advantages of the API and API type separators are simplicity of design, low cost, low maintenance, and resistance to plugging with solids. The primary disadvantage of these simple gravity separators is the poor quality of separation that they provide.

Enhanced Gravity Separation

Enhanced gravity separators provide better quality separation than is possible with simple gravity separators, while still maintaining the low capital and maintenance cost benefits of the simpler systems. In many ways, the enhanced gravity separators substitute sophisticated design and internals for the settling time provided in pure gravity separators. These enhanced gravity separation systems have some similarity to API separators, but include coalescing media that enhances the separation of the oil and water.

Multiple Angle Plate Separators

Multiple angle plate separators such as the MSR *HE-Media* systems were developed to take advantage of the effects of gravity to the fullest and optimize the oil removal process. A drawing of a typical above-ground multiple angle separator at a maintenance facility is provided below in Figure 2.

![Figure 2: Typical Above-Ground Maintenance Facility Separator](image)

The coalescing plates are corrugated in both directions, making a sort of "egg-carton" shape. This is done so that all of the underside surfaces slope upward, encouraging captured oil to move toward the surface. Spacers are built into the plates for two vertical spacing sizes (8 mm and 16 mm). The narrow spacing is more efficient and the wider spacing is more tolerant of solids.
Applications of the Different Systems

In recent years, more stringent effluent requirements have required the conversion of numerous API separators to have more efficient designs. New facilities are being engineered with these requirements in mind and are utilizing the more sophisticated designs as discussed above. Historic designs for separators are still used for many non-critical uses and where the effluent will be treated downstream.

Coalescing plate separation systems offer better performance than the simpler systems, but at higher costs (Romano, 1990). It is often necessary to balance the cost versus the benefits in order to meet the regulatory requirements. Where applications require high efficiency oil removal as well as the ability to tolerate solids, MSR coalescing plate systems have proven sustainability under difficult conditions and still provide effluent oil concentrations that meet the normal regulatory requirements.

Advantages of the multiple-angle plate separator system are:

1) The plates are designed to shed solids to the bottom of the separator, avoiding plugging and directing the solids to a collection area. The solids drop directly to the bottom of the separator. If desired, troughs to collect the solids can be incorporated.
2) The double corrugations provide surfaces that slope at a 45° angle in all directions, so that coalesced oil can migrate upward.
3) The holes in the plates that constitute the oil rise paths and solids removal paths also provide convenient orifices for inserting cleaning wands. Other types of pack systems are not available with such holes and are more difficult to clean when plugged with the solids.

SPECIFYING COALESCING SEPARATORS AT AIRPORT FACILITIES

There are a number of components that affect the design of coalescing separators at airport facilities. These include the water flow rate, water temperature, amount of oil present in the water, and the use of existing equipment (if applicable), and others.
Fuel Farm Separators

The Rational Formula, shown below, can be used to estimate the flow rate of various rain intensities. The coefficient noted in this formula is dependent upon the ground surface type, but for paved areas 0.95 is often used.

Rational Formula: \[Q = c i A \]

The *Rational Formula* requires the following units:
- \(Q \) = Peak discharge, cfs
- \(c \) = Rational method runoff coefficient
- \(i \) = Rainfall intensity, inch/hour
- \(A \) = Drainage area, acre

The rainfall intensity can be obtained from the rainfall intensity maps (5 year duration for U.S. and Canada), and the surface area (ft\(^2\)) of the rainwater is utilized in the *Rational Formula* to provide the necessary corrected runoff flow (CFS or US GPM). It is usually assumed that there is approximately 100 mg/L of oil in the rainwater, and the average droplet size is about 120 μm.

Some jurisdictions require the use of a longer return period storm, such as a 10 year storm, and some allow the use of a shorter return period storm. For a given installation, it is advisable to consult local authorities to determine what design storm should be used.

In the case of a large spill, it is assumed 5000 parts per million of oil content and 260 μm for the average oil droplet size. Often, a spill will be washed down with one or more firehoses, approximately 50 US GPM per firehose, and a custom separator can be designed to manage whatever flow is expected, based on local practices for washdown.

MSR generally uses 0.83 as an estimate for the hydrocarbon specific gravity. This is typical for jet fuel.

The operating water temperature is an important variable in the design because it governs the viscosity of the water. This is usually known, or may be measured, but if is unknown, in cold climates, a reasonable attention is 32°F. This is the most conservative, worst case possible. In milder climates, a reasonable assumption is 55°F because it is generally the average groundwater temperature worldwide.

With the flow, operating temperature, oil content, specific gravity and average droplet size (many of which will be estimated); it is possible to determine an appropriate size design for a separator. It is often necessary to consider several process situations to determine which is most stringent.
Truck Filling Area Separators

In general, truck filling areas are placed so that the pavement around the filling area is either sloped to a central drain, equipped with an oil-water separator, is provided with a berm so that all the water that falls on the filling area is captured, or it may be within the tank farm berm. The flow rate for a separator to deal with the rainwater from this area is calculated by the Rational Formula in the same way that the flow rate for the tank farm is calculated. In general, other operating conditions such as the temperature and oil content are the same.

The specification should consider whether there is a possibility of a substantial spill during the truck filling operation, and if this is possible, provisions should be made for capturing that spill. Likewise, it is likely that the fueling personnel might utilize firehoses to wash down any spill that has occurred, and if this is possible, the separator should be sized appropriately for the flow of the expected number of firehoses.

Fueling Apron Separators

Specifications for treating the water from fueling aprons can be very similar to those for truck filling area separators. The Rational Formula would be used for calculating rainfall flows, and for the spill/washdown case, the flow from the firehoses used at the site would be used for design purposes. Standard firehose nozzles are usually rated at 50 US GPM, but the specific equipment used at the site should be considered in the design flow calculations.

Vehicle Maintenance Facility Separators
Many airports, both commercial and military, are equipped with vehicle maintenance facilities for maintaining the ramp vehicles trucks, fueling trucks and other mobile equipment. This is partly for cost control reasons and partly because it is more convenient to have maintenance facilities close at hand. Most of the maintenance facilities have some connection between the hydrocarbons that might leak or be spilled from vehicles and water that might be used for washing the floors. Consequently, oil-water separators are recommended for maintenance facilities.

Maintenance separators are utilized as either above ground or below ground separators. The above ground separators are usually made of metal whereas the below ground separators are usually made of concrete. The choice of separator design is often controlled by the requirements of the site, but all other things being equal, it is generally more cost-effective to utilize below ground precast concrete separators. Below ground systems are often retrofitted with the media installed in the frames. This is both for ease of installation and ease of later service. The captured oil is self-removing to the surface, but solid particles can accumulate in the media resulting in the need for physical removal.

Both of the systems shown above are installed at US Military installations in the US.

The quantity of the wastewater from an airport facility may often be established by the flow of equipment such as pressure washers. The flow capacity of a standard pressure washer is approximately 4.5 US GPM (17 L/min), although there are much larger ones available. In the event that the major amount of flow results from the pressure washer, it is often possible to determine the flow from the nameplate of the pressure washer or the manufacturer’s websites.
Sometimes the maximum flow rate will be the result of the use of one or more garden hoses for floor washing. A reasonable flow rate to use for designing under these circumstances is approximately 10 US GPM (37.8 L/min) per garden hose.

Parking Lots

Some jurisdictions require treating the water from parking lot areas. Parking lot flow rates are estimated in the same manner as the fuel farm flow rates – utilizing the *Rational Formula*.

Numerous factors affect the oil content of the water, including the intensity of the storm, the time since the previous storm, and size and intensity of any possible oil leaks. This implies a great deal of variation in the oil content, and MSR has found that the 100 mg/L, as mentioned above, can be used for satisfactory designs in normal cases. MSR generally utilizes an operating temperature of 32°F and an oil specific gravity of approximately 0.85. This is equivalent to diesel fuel or a diesel fuel and lubricating oil mixture.

GENERAL DESIGN CONSIDERATIONS

Numerous factors must be considered in the selection and design of oil-water separation systems. Among these are:

1. Flow rate and flow conditions
2. Degree of separation required - effluent quality
3. Amount of oil in the water
4. Existing equipment
5. Emulsification of the oil
6. Treated water facilities
7. Recovered oil disposal method

For industrial and some municipal applications, flow rate, amount of oil, flowing temperature, and other conditions affecting separation (such as whether flow is laminar or turbulent) may be easily determined. For airport facility applications, however, it may be necessary to estimate water flow quantities utilizing the Rational Formula or other means. The degree of separation required is usually a matter of statutory or regulatory requirements, but if the water is discharged to a POTW or industrial treatment plant it may be negotiable.

Existing equipment, such as API separators, may affect the design of equipment to be used. Often it is possible to retrofit existing equipment with more sophisticated internals to enhance separation quality.

It is necessary to ensure that adequate size piping is provided for downstream treated water removal to avoid flooding the separator. A downstream test point should be provided to allow for effluent testing.
Adequate means for recycling the oil should be provided (usually a recycling company). Careful records of removed and recycled oil should be kept to avoid possible future regulatory problems.

The following is a brief discussion of several of the points touched on the above, concerning the design of oil-water separation systems.

Inlet Flow (Influent) Conditions

Much of the performance of an oil-water separator depends on the influent conditions. Pumps, valves, restrictions in piping and other pressure-drop (shear) causing equipment will form a distribution of droplets with a smaller average droplet size than would otherwise be present in the flow stream. These smaller droplets are more difficult to separate because they rise more slowly. A separator designed to remove these smaller droplets must be significantly larger (and more expensive) than one designed for the larger average size droplets that would be present if no shear-causing equipment were utilized in the inlet stream.

Ideal inlet conditions for an oil-water separator include:

1. Gravity flow (not pumped) in the inlet piping
2. Inlet piping sized for minimum pressure drop
3. Inlet piping straight for at least ten pipe diameters upstream of the separator (directly into nozzle)
4. Inlet piping containing a minimum of elbows, tees, valves, and other fittings
5. Soaps or detergents NOT in use

Most separators are provided with an inlet elbow or tee inside the separator pointing downward. This is an exception to the above rules and is intended to introduce the influent water below the oil layer on the surface, thus not disturbing the surface oil and re-entraining some of it.

Inlet piping should be as smooth as possible to avoid turbulence caused by pipe roughness. Smooth PVC is preferable as opposed to rough concrete.

If large quantities of solid particles are expected, it is wise to provide a grit removal chamber before the separator. These chambers should be designed according to normal design parameters for grit removal as used in POTW plant design. Likewise, a design utilizing media in a metal frame, as discussed above, is a good strategy if large quantities of solids are expected.

Outlet Flow (Effluent) Conditions
Effluent designs are also important in the operation of oil-water separators. Downstream piping and other facilities must be adequately sized to process the quantity of water (and oil) from any likely event.

Effluent piping must be designed with siphon breaks so that it is not possible to siphon oil and water out of the separator during low flow conditions. One way to do this is to provide the sampling/overflow tee in the effluent line as shown in Figure 1. In most underground systems, oil must be removed manually by a maintenance crew equipped with a vacuum truck or other equipment for oil removal. If this is not done on a regular basis, this oil may become re-entrained at the next rainfall event and reintroduced into the environment (Romano, 1990). In underground systems, captured oil holding tanks are usually not provided. This will avoid possible entanglement in the Underground Storage Tank Rules paperwork. In above ground systems, special oil holding tanks are often provided.

Removing the oil from the separators is not sufficient to protect the environment; it must also be recycled to ensure that it is disposed of properly. Current U.S. law holds the owner of the oil-water separator responsible if this oil is not properly disposed of, even if the owner has paid for proper disposal.

SUMMARY AND CONCLUSIONS

Environmental regulations are becoming more restrictive and requiring lower concentrations of hydrocarbons in effluent water. Some localities have much more stringent effluent standards than even the US EPA or other national bodies mandate.

Unfortunately, budgets for wastewater treatment are always very limited. Empty tank (API or API Type) systems are not adequate to ensure good treatment and it is essential to utilize a high-efficiency system to remove the oil.

Utilizing multiple angle coalescing plates, such as the Mohr Separations Research HE-Media design in concrete vaults or other systems, provides a cost-effective method of ensuring good quality effluent from oil-water separators for airport facilities. MSR systems guarantee effluent quality that meets or exceeds the requirements of federal, state, and local regulations. To ensure proper sizing, each system should be individually designed to meet all facility conditions and requirements. MSR green technology has proven sustainability and requires very little maintenance. Please contact MSR if you have questions or would like to discuss any aspect of this type design.
ABOUT THE AUTHOR

MSR was founded in 2001 by Kirby S. Mohr, a degreed engineer specializing in the filtration and separation of liquids. Kirby holds degrees in Chemical Engineering and Environmental Engineering from Iowa State University and Oklahoma State University, respectively, and is a Registered Professional Engineer in Texas. He has more than forty years of experience in engineering, with the last thirty specializing in separation and filtration.

Kirby is a Vietnam Veteran. He is also a member of the Water Environment Federation, the Society of American Military Engineers, the American Rainwater Catchment Systems Association, AmericanRivers.org, the US Navy Supply School Alumni Association and others. He has been a member of the ASTM and ULC committees for preparing test standards for oil water separators.

Since the company founding, we have completed projects in the Electric Utility, Oil Refining and Production, Chemical Manufacture, Stormwater Processing, Transportation, and Vehicle Maintenance industries. Our projects are very diverse, ranging from the design of oil-water separators for US and Canadian fire training schools, to two very large separators for a large Canadian electric power generation facility, and four of the world’s largest for a US petroleum refinery. Our systems have been installed from coast to coast and from Texas to near the Arctic Circle as well as international locations, including Europe and South America.
REFERENCES

American Petroleum Institute (API), Bulletin 421, 1990

